Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus.
نویسندگان
چکیده
We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.
منابع مشابه
Excitability governs neural development in a hippocampal region-specific manner.
Neuronal activity, including intrinsic neuronal excitability and synaptic transmission, is an essential regulator of brain development. However, how the intrinsic neuronal excitability of distinct neurons affects their integration into developing circuits remains poorly understood. To investigate this problem, we created several transgenic mouse lines in which intrinsic excitability is suppress...
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملThe Role of Activity in Synaptic Degeneration in a Protein Misfolding Disease, Prion Disease
In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer's, Parkinson's and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic t...
متن کاملبررسی اثر تحمل دارویی ناشی از مصرف مزمن مرفین و سالیسیلات بر شکل پذیری سیناپسی
Background & Aim: Salicylates and opioids are widely used in chronic pain relief. Chronic use of these drugs reorganizes synaptic function, especially experience-dependent plasticity in brain regions. Therefore, in this study the effects of chronic administration of salicylate and morphine on synaptic plasticity were investigated. Methods: in this review, Elsevier, Science Direct, PubMed and G...
متن کاملCholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 6 شماره
صفحات -
تاریخ انتشار 1996